22:35 Что такое радиоволны? |
Хотя от любителей требуется только беглое знакомство с физикой ионосферы, более детальное представление о ней может значительно увеличить удовольствие от их хобби. Предлагаемый «букварь» позволит до некоторой степени заполнить пустоту и отправиться в увлекательное путешествие.
Радиосвязь через ионосферу — увлекательное и важное средство установления связей на большие расстояния. Тысячи любителей и коммерческих операторов каждый день используют ионосферу для установления контактов на обширных территориях. Однако чтобы полностью использовать возможности этого способа распространения, мы должны понимать физику, которая скрывается за этой магией. Знание того, когда нужно прослушивать, какую частоту лучше использовать и откуда можно ожидать прихода сигнала, позволяет опытному DX’мену работать с дальними станциями. Несомненно, знание физики распространения и «чувство» условий, существующих в каждом диапазоне — очень ценное качество любого радиооператора. Атмосфера. На рисунке видно, что тропосфера — это ближайшая к Земле часть атмосферы, простирающаяся в высоту на расстояние около 10 км. На высотах между 10 и 50 км мы находим стратосферу, в которой расположен пресловутый озоновый слой (на высоте около 20 км). В случае КВ-связей наиболее важную роль играет ионосфера, в то время как тропосфера играет ключевую роль в связях на ВЧ и УВЧ. Ионосфера охватывает несколько метеорологических слоев и простирается по высоте примерно от 50 до 650 км. Ионосфера. Число свободных электронов (рис. 2) начинает нарастать с высоты примерно 30 км, однако плотность электронов становится достаточной для того, чтобы влиять на радиоволны, только начиная с высоты около 60 км. Мы часто представляем себе ионосферу состоящей из нескольких различных слоев. И хотя это удобно для объяснения некоторых явлений, это все же не совсем точно, поскольку ионизированные молекулы (и свободные электроны) имеются во всей ионосфере В действительности слои лучше всего представлять как максимумы уровня ионизации. Чтобы иметь возможность быстро указывать на отдельные слои, пики или области, мы их обозначаем буквами D, Е и F (имеется еще и слой С, однако уровень ионизации в нем так низок, что он не влияет на радиоволны). Слои. Следующий слой, лежащий выше слоя D, называется слоем Е. Его можно обнаружить на высотах между 100 и 125 км. Поскольку и здесь электроны и ионы рекомбинируют достаточно быстро, после захода Солнца уровень ионизации быстро падает. И хотя при этом некоторый остаточный уровень ионизации остается, фактически, ночью слой Е исчезает. Для дальних связей наиболее важную роль играет слой F. В течение дня он часто распадается на два субслоя, которые мы обозначаем как F1 и F2 (рис. 3). Ночью оба слоя снова сливаются в один слой F. Высота слоя F сильно варьируется и зависит от времени суток, сезона и состояния Солнца. Летом слой F1 может располагаться на высоте 300 км, а слой F2 — на высоте 400 км или выше. Зимой эти цифры могут быть, соответственно, 100 км и 200 км. Ночью слой F располагается, как правило, на высотах 250-300 км. Однако все эти цифры очень относительны, и их нужно рассматривать только как оценочные. Как и в слоях D и F, уровень ионизации в слое F падает ночью. Однако поскольку этот слой располагается гораздо выше, и плотность воздуха в нем гораздо меньше, рекомбинация происходит здесь гораздо медленнее. Так как ионизация сохраняется всю ночь, этот слой может оказывать влияние на распространение радиосигналов. Солнце и ионосфера. Число солнечных пятен меняется с 11-летним периодом (хотя это и достаточно приближенная закономерность). А это означает, что и ионосферные условия (а значит, и распространение радиоволн) меняются синхронно с этим циклом. В нижней точке цикла в диапазонах ВЧ выше примерно 20 МГц ионосферное распространение может и не возникнуть. Вблизи пика 11-летней активности могут быть активными частоты от 50 МГц и выше. Поверхностная и воздушная волны. Поверхностная волна возникает, когда сигнал распространяется от передатчика по всем направлениям. Вместо того чтобы распространяться по прямой линии (и не быть слышимым за пределами видимого горизонта), радиосигнал стремится следовать кривизне Земли (рис 4). Это явление происходит вследствие того что в земной поверхности индуцируются токи, которые замедляют волновой фронт вблизи поверхности. В результате этого волновой сигнал наклоняется книзу, что дает ему возможность следовать кривизне Земли и распространяться за горизонт. За некоторыми исключениями, связь с помощью поверхностной волны обычно используется для сигналов с частотами ниже 2-3 МГц. На более высоких частотах она не используется вследствие роста затухания с частотой; в результате, связь становится ненадежной. Это хорошо демонстрирует тот факт что радиовещательные коротковолновые станции, использующие поверхностную волну, слышны только на коротких расстояниях. В то же время средневолновые станции слышны на гораздо больших расстояниях — типичная мощная радиовещательная станция АМ охватывает зону в сотню миль, а то и больше. На полную зону охвата влияют многие факторы, включая мощность передатчика, тип антенны и характер поверхности, над которой распространяются сигналы. Сигналы могут также отрываться от земной поверхности и распространяться по направлению к ионосфере. Как мы увидим ниже, некоторые из них возвращаются назад к земле. Слой D. Затухание сигналов при прохождении через слой D обусловлено тем, что они вызывают колебания свободных электронов. Когда это происходит, электроны сталкиваются с молекулами, расходуя при этом некоторое небольшое количество энергии и диссипируя пропорциональное ему количество энергии радиосигнала. Легко видеть, что уровень затухания зависит от количества происходящих столкновений. А это количество, в свою очередь, зависит от многих других факторов. Одним из наиболее очевидных является число имеющихся молекул газа. Большее количество молекул газа означает больше столкновений и рост затухания. Важны также уровень ионизации и частота радиосигнала. С ростом частоты длина волны убывает, и число столкновений между свободными электронами и молекулами газа убывает. Поэтому низкочастотные сигналы затухают гораздо сильнее высокочастотных. Слои Е и F. Изменения частоты. С дальнейшим ростом частоты отражение от слоя Е становится все менее эффективным. И, наконец, сигналы достигают слоя F1, где они могут отразиться обратно и, пройдя через слои Е и D, снова достичь Земли. Поскольку слой F1 расположен выше слоя Е, расстояния, проходимые сигналами, отраженными от слоя F, будут гораздо больше. Если частота возрастает еще больше, сигналы в конце концов пройдут через слой F1 до слоя F2. Поскольку это — самый высокий из отражающих слоев, расстояние, перекрываемое сигналами, отраженными от него, будет наибольшим. Максимальное «скачковое» расстояние для слоя Е примерно равно 2000 км. Для слоя F2 оно возрастает примерно до 4000 км — выигрыш значителен (выше рис. 6). Несколько скачков. Таким способом сигнал может распространяться вокруг всего земного шара (и даже в нескольких направлениях). Свойства земной поверхности имеют большое значение. Пустыни — плохие отражатели, зато океаны очень эффективны. Это означает, что сигналы, отраженные от Атлантического океана, например, будут гораздо сильнее, чем сигналы, отраженные от таких зон как пустыня Сахара. Кроме потерь, вызванных отражением от земной поверхности, сигналы испытывают затухание каждый раз, когда они проходят через слой D. И действительно, затухание в слое D очень существенно, особенно если вспомнить, что сигналы дважды проходят через слой D при каждом «путешествии» их к слою Е или F. Помимо того что высокие частоты более удобны для использования, так как они отражаются от слоя F2 и поэтому требуют меньшего числа отражений, они же испытывают и меньшее поглощение в слое D. Это означает, что, при прочих равных условиях, сигнал на частоте 28 МГц, например, будет сильнее сигнала частоты 14 МГц (если связь установлена на обеих частотах). Расстояние скачка и «мертвая» зона. Имеется также область, которую называют «мертвой» зоной. Сигналы поверхностной волны из-за затухания будут слышны только на определенном расстоянии от передатчика. Сигналы, распространяющиеся к ионосфере, не могут отразиться раньше, чем они достигнут ионосферы. При этом они проходят расстояния, которые гораздо больше тех, на которых полностью исчезает поверхностная волна. Это приводит к возникновению области, где сигналы не могут быть услышаны. Эта зона и называется «мертвой» зоной. Она особенно ярко выражена для высокочастотных сигналов, для которых поверхностная волна затухает очень быстро, а расстояние скачка может иметь величину в тысячу миль или больше. Для любителей понимание закономерностей распространения волн очень важно, и оно очаровывает. Однако чем больше вы начинаете понимать, тем более интересным это становится. G3YWX |
|
Всего комментариев: 0 | |