20:11 СОГЛАСОВАНИЕ АНТЕНН | ||||
В предисловии к своей книге "Антенны", Ротхаммель в первой же строке повторил известную истину : хорошая антенна - лучший усилитель высокой частоты. Однако многие радиолюбители иногда забывают о том, что построить хорошую антенную систему стоит столько же, сколько стоит хороший трансивер и наладка антенно- фидерного устройства требует такого же серьезного подхода как и наладка приемо-передатчика. Построив антенну по взятому откуда- нибудь описанию, радиолюбители чаще всего налаживают ее с помощью КСВ-метра, либо вообще полагаются на случай и не производят никаких измерений. Поэтому во многих случаях можно услышать отрицательные отзывы о неплохих антеннах ,или что для повседневных связей им недостаточно разрешенной мощности. Здесь сделана попытка в краткой форме сделать обзор простых способов согласования и измерений в АФС (антенно-фидерных системах) в виде путеводителя по книгам (далее по тексту ссылки по номерам):
а также приведены некоторые практические советы. Итак... Почему нельзя серьезно относиться к наладке вновь созданных антенно- фидерных устройств с помощью КСВ-метра? КСВ-метр показывает отношение (Uпрям+Uотр) к (Uпрям-Uотр) или другими словами во сколько раз отличается импеданс антенно-фидерного тракта от волнового сопротивления прибора (выход передатчика, например). По показаниям КСВ-метра нельзя понять, что значит КСВ=3 при сопротивлении выходного каскада 50 Ом. Волновое сопротивление антенно-фидерного тракта в этом случае может быть чисто активным (на частоте резонанса ) и может быть равным 150 Ом или 17 Ом (и то и другое равновероятно!). Не на частоте резонанса сопротивление будет содержать активную и реактивную (емкостную или индуктивную )в самых различных соотношениях и тогда совершенно непонятно, что надо делать - то ли компенсировать реактивность, то ли согласовывать волновое сопротивление. Для точного согласования АФУ необходимо знать:
Целью согласования антенны является задача выполнения двух условий подключения антенны к приемо-передатчику:
Если эти условия выполняются в месте запитки антенны (точка соединения антенны с фидером), то фидер работает в режиме бегущей волны. Если выполнить условия согласования в месте соединения фидера с приемо-передатчиком, а сопротивление антенны отличается от волнового сопротивления фидера, то фидер работает в режиме стоячей волны. Однако работа фидера в режиме стоячей волны может повлечь за собой искажение диаграммы направленности в направленных антеннах (за счет вредного излучения фидера) и в некоторых случаях может привести к помехам окружающей приемопередающей аппаратуре. Кроме того, если антенна используется на прием, то на оплетку фидера будут приниматься нежелательные излучения (например помехи от вашего настольного компьютера). Поэтому предпочтительнее использовать питание антенны по фидеру в режиме бегущей волны. До того как поделиться практическим опытом согласования антенн, несколько слов об основных способах измерений. 1.1. Наиболее простой способ измерения резонансной частоты антенны- с помощью гетеродинного индикатора резонанса (ГИР). Однако в многоэлементных антенных системах измерения ГИРом бывает выполнить сложно или совсем невозможно из-за взаимного влияния элементов антенны, каждый из которых может иметь свою собственную резонансную частоту. 1.2. Способ измерения с помощью измерительной антенны и контрольного приемника. К измеряемой антенне подключается генератор, на расстоянии 10-20l от измеряемой антенны устанавливается контрольный приемник с антенной, которая на этих частотах не имеет резонансов (например короче l/10). Генератор престраивается в выбраном участке диапазона, с помощью S-метра контрольного приемника измеряют напряженность поля и строят зависимость напряженности поля от частоты. Максимум соответствует частоте резонанса. Этот способ особенно применим для многоэлеметных антенн, В этом случае измерительный приемник необходимо располагать в главном лепестке диаграммы направленности измеряемой антенны. Вариант этого способа измерения - применение в качестве генератора, передачика мощностью в несколько Ватт и простого измерителя напряженности поля(например [1], Рис 14-20.). Однако надо учесть, что при измеренях вы будете создавать помехи окружающим. Практический совет при измерениях в диапазоне 144-430 мГц - при измерениях, не держите в руках измеритель напряженности поля, чтобы ослабить влияние тела на показания прибора. Закрепите прибор над полом на высоте 1-2 метра на диэлетрической подставке (например дерево, стул) и снимайте показания, находясь на расстоянии 2-4 метра , не попадая в зону между прибором и измеряемой антенной. 1.3. Измерение с помощью генератора и антенноскопа (например [1], Рис 14-16). Этот способ применим в основном на HF и не дает точных результатов, но позволяет попутно оценивать и сопротивление антенны. Суть измерений заключается в следующем. Как известно, антенноскоп позволяет измерять полное сопротивление (активное+реактивное). Т.к. антенны обычно запитывают в пучности тока (минимум входного сопротивления) и на частоте резонанса отсутствует реактивность, то на резонансной частоте антенноскоп будет показывать минимальное сопротивление, а на всех остальных частотах чаще всего оно будет больше. Отсюда и последовательность измерений - перестраивая генератор, измеряют входное сопротивление антенны. Минимум сопротивления соответствует резонансной частоте.Одно НО - антенноскоп необходимо подключать обязательно прямо в точке питания антенны, а не через кабель! И практическое наблюдение - если рядом с вами находится мощный источник радиоизлучения (теле или радиостанция), из-за наводок антенноскоп никогда не будет балансироваться "в ноль" и производить измерения становится практически невозможно. 1.4. Очень удобно определять резонансную частоту вибраторов с помощью измерителя АЧХ. Подключив выход измерителя АЧХ и детекторную головку к антенне, определяют частоты , на которых видны провалы в АЧХ. На этих частотах антенна резонирует и происходит отбор энергии с выхода прибора, что хорошо видно на экране прибора. Для измерений подходят практически любые измерители АЧХ (Х1-47, Х1-50, Х1-42, СК4-59). Вариант измерений- с помощью анализатора спектра (СК4-60) в режиме с длительным послесвечением и внешнего генератора. В качестве внешнего генератора можно использовать генератор гармоник: на HF- с шагом 10 кГц, на 144 мГц- с шагом 100 кГц, на 430 мГц- с шагом 1 мГц. На частотах до 160 мГц наиболее ровномерный спектр с высокой интенсивностью гармоник дает схема генератора гармоник на интегральной схеме 155ИЕ1 . В диапазоне 430 мГц достаточный уровень гармоник можно получить в схеме с накопительным диодом 2А609Б (схема калибратора 50 мГц из СК4-60). 2.1. Самый простой (еще доступный по цене) серийно выпускаемый прибор, для измерений активного сопротивления и фазы сигнала (а значит и реактивной составляющей)- это измерительный мост. Существует несколько модификаций этих приборов для использования с 50 и 75-омным трактом и на различные диапазоны частот до 1000 мГц - это измерительные мосты Р2-33...Р2-35. 2.2 В радиолюбительской практике чаще используют более простой вариант измерительного моста, предназначенного для измерений полного сопротивления (антенноскоп). Конструкция его, в отличие от мостов Р2-33... очень проста и легко повторяется в домашних условиях ([1], стр. 308-309). 2.3 Полезно помнить некоторые замечания, касающиеся сопротивлений в АФС. 2.3.1. Длинная линия с волновым сопротивлением Zтр и с электрической длиной l/4, 3 х l/4 и т.д. трансформирует сопротивление , которое можно рассчитать из формулы
либо по Рис. 2.39 [2]. В частном случае, если один конец l/4 отрезка разомкнуть, то бесконечное сопротивление на этом конце отрезка трансформируется в ноль на противоположном конце (короткое замыкание) и такие устрой- ства используют для трансформации больших сопротивлений в малые. Внимание! Эти виды трансформаторов эффективно работают только в узком частотном диапазоне, ограниченом долями процентов от рабочей частоты. Длинная линия с электрической длиной кратной l/2 вне зависимости от волнового сопротивления этой линии трансформирует входное сопротивление в выходное с отношением 1:1 и их используют для передачи споротивлений на необходимое расстояние без трансформации сопротивлений, либо для переворачивания фазы на 180°. В отличие от l/4 линий, линии l/2 обладают большей широкополосностью. 2.3.2. Если антенна короче , чем вам необходимо, то на вашей частоте сопротивление антенны имеет реактивную составляющую емкостного характера. В случае, когда антенна длиннее, на вашей частоте антенна имеет рективность индуктивного характера. Разумеется на вашей частоте нежелательную реактивность можно компенсировать введением дополнительной реактивности противоположного знака. Например, если антенна длиннее, чем это необходимо, индуктивную составляющую можно компенсировать включением последовательно с питанием антенны емкости. Значение необходимого конденсатора можно рассчитать для нужной частоты, зная значение индуктивной составляющей (см. Рис 2.38 [2]), либо подобрать экспериментально, как это описано в пункте 5. 2.3.3. Введение дополнительных пассивных элементов обычно понижает входное сопротивление антенны (например для квадрата: со 110-120 Ом до 45-75 Ом). 2.3.4. Ниже приведены теоретические значения наиболее часто встречающихся вибраторов (вибраторы находятся в свободном от окружающих предметов пространстве), антенн и фидеров:
Эти измерения желательно делать уже после согласования, описанного в п. 5 для оценки качества согласования. 3.1. Приборы для определения степени согласования открытых двухпроводных линий с антенной: 3.1.1. Обычная неоновая лампочка или ГИР. При перемещении лампочки вдоль линии передачи, яркость свечения лампочки не должна изменяться (режим бегущей волны). Вариант измерений - прибор, состоящий из петли связи, детектора и стрелочного индикатора (см. Рис. 14.8 [1]). 3.1.2. Двухламповый индикатор (см. рис. 14.7 [1]). Настройкой добиваются, чтобы лампочка подключеная к плечу, близкому к антенне, не светилась, а в противополжном плече свечение было максимально. При малых уровнях мощностей можно использовать детектор и стрелочный индикатор вместо лампочки. 3.2. Приборы для определения степени согласования в коаксиальных трактах: 3.2.1. Измерительная линия - прибор, который применим для измерения степени согласования в коаксиальных и волноводных линиях начиная с УКВ и заканчивая сантиметровым диапазоном волн. Кострукция его несложная - жесткий коаксиальный кабель (волновод) с продольной щелью во внешнем проводнике, вдоль которой перемещается измерительная головка с измерительным зондом, опущеным в щель. Перемещая измерительную головку вдоль тракта, определяют максимумы и миниммумы показаний, по соотношению которых судят о степени согласования (режим бегущей волны - показания не изменяются по всей длине измерительной линии). 3.2.2. Измерительный мост (рис.14.18 [1]). Позволяет измерять КСВ в линиях переадчи до 100 Ом на HF и VHF при подводимой мощности около сотен милливатт. Очень простая в изготовлении кострукция, не содержит моточных улов, конструктивных узлов, критичных к точности изготовления. 3.2.3. КСВ-метры на основе рефлектометров. Описано множество конструкций этих приборов (например Рис. 14-14 [1]. Позволяют следить за состоянием АФC в процессе работы в эфире.3.2.4. КСВ-метры на основе измерителей АЧХ. Очень удобные для изучения качества согласования на любых частотах, вплоть до 40 гГц. Принцип измерений - измерительный комплект приборов состоит из измерителя АЧХ и направленного ответвителя, соединенных в следующую схему:
4.1. Измерения с помощью антенноскопа (приведено в [1] стр.308-312). 4.1.1. Определение точной электрической длины l/4 линии: 4.1.2. Измерение волнового сопротивления линии Zтр:
4.1.3. Проверка точности размеров l/2 трансформирующей линии:
4.1.4. Определнение коэффициента укорочения линии передачи:
Например, если длина линии X=3.3 метра, а баланс произошел на частоте F=30 мГц, то L=5метров, а K=0.66. Обычные значения коэффициентов укорочения для коаксиальных линий - 0.66, для ленточных кабелей - 0.82, для открытых двупроводных линий - 0.95 . 4.2. Измерения с помощью АЧХ-метра выполняются по схеме, приведеной в п3.2.4. 4.2.1. Локализация неоднородностей в фидере. При необходимости определить расстояние до неоднородности в фидере (короткое замыкание или обрыв) не демонтируя фидер, это можно сделать следующим образом. При обрыве или КЗ в фидере, максимальный КСВ будет наблюдаться на частотах ,где линия работает как трансформатор l/2,а также на кратных частотах независимо от диапазона, выбранного для измерений. Фидер отстыковывают от трансивера и подключают к выводу 2 направленного ответвителя. Устанавивают такую полосу качания,чтобы удобно было производить измерения периода КСВ. Измеренный период в мегагерцах соответствует частоте, на которой линия работает как l/2 отрезок с учетом укорочения. Допустим частотный интервал между максимумами КСВ равен 3 МГц , значит, частота на которой линия сейчас работает как трансформатор l/2, равна 6 мГц и это соответстует длине волны 50 метров (т.е. до неоднородности 50 метров без учета коэффициента укорочения линии). Зная коэффициент укорочения линии можно точно сказать действительное расстояние до неоднородности. Например если линия выполнена коаксиальным кабелем с коэф. укорочения 0.66, то в нашем случае расстояние от передачика до обрыва (КЗ) в коаксоальном кабеле равно 33 метра. 4.2.2. Измерение коэффициента укорочения кабеля. 4.2.3. Проверка кабеля 50 Ом на отсутствие неоднородностей. В качестве примера, несколько слов о порядке настройки антенны дельта для диапазона 80 метров, пользуясь способами измерений, приведенными выше. Необходимо согласовать выходной каскад передатчика (50 Ом) с антенной по кабелю 50 Ом. Если нет возможности измерить сопротивление антенны и найти резонансную частоту антенны, подключившись прямо в точке запитки , подключаем транформирующую линию l/2 между приборами и антенной. Таким образом, пользуясь трансформирующими свойствами линии (1:1) можно проводить измерения не непосредственно у антенны, а на другом конце линии.
Многие жалуются, что их настольный компьютер сильно мешает приему. Причиной этого в большинстве случаев является плохое согласование антенны. В этом случае оплетка кабеля питания антенны принимает излучения компьютера и они в виде помехи попадают на вход приемника. Проверить это предположение просто - отстыкуйте кабель от входа приемника, если помехи исчезнут, значит основной путь попадания помех от компьютера на вход приемника- по оплетке кабеля. После тщательного согласования антенны с помощью приведенных ниже способов, можно в значительной мере избавиться от помех по приему и от неустойчивой работы цифровых узлов при передаче. Второе необходимое условие для удобства работы с компьютером - тщательное заземление всех приборов. Заземление на трубу отопления - не годится! Третий путь - заключить все кабеля, идущие от компьютера, в экран и очень желательно пропустить каждый из них сквозь ферритовое кольцо 2000 НМ (по паре витков). Можно также пропустить сквозь кольцо и антенный кабель (для дополнительного симметрирования кабеля и устранения распространения ВЧ-сигналов по оплетке кабеля). Иногда источником помехи является монитор и кабели, идущие к нему. Попробуйте включить-выключить монитор из сети при работающем и загруженом компьютере. Если уровень помехи изменяется, то рекомендуется отдельно заземлить шасси монитора, а точку заземления шасси необходимо подобрать экспериментально по минимуму помех | ||||
|
Всего комментариев: 0 | |